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Liapunov stability of the zero solution of an autonomous system of ordinary 
differential equations is investigated in the case when the characteristic 
equations of the related linearized system has only different pure imagin- 

ary roots that satisfy some linear integral relations or, putting it differently, 
the condition of inner resonance. The simultaneous presence of several res- 

onance relationships, which was touched upon earlier in [l, 31, is consider- 

ed here. The normal form of a system that contains the first nonlinear terms 

for an arbitrary number of noninteracting, as well as interacting resonances 
of an odd order is formulated on the basis of results obtained in [3]. The 

cas: of resonance interaction in which the necessary and sufficient condi- 
tions of the model system stability are reduced to conditions formulated in 
[3] for a single resonance. Necessary condition of stability are defined for 

the most general case of resonance interaction. As an example of the com- 
plex mechanical system in which resonance interaction may occur, the 
translational-rotational motion of a geo-stationary satellite vehicle, which 

can hover for a fairly extended time over any point of the Earth, is consid- 

ered. All resonance modes, including some of the considered cases of res- 
onance interaction in the region where the necessary stability conditions are 

satisfied, were determined with the use of a computer. 

Let us consider the nroblem of stability of the zero solution of the system of equations 
x* - = As, -t_ x, (5*), z*’ = ax* / 02 P.1) 
“* = (5#*, * . ‘, $a,), x, = (Xl”, . . ., Xaq*), Y, (0) = 0 

where X* and X,ar&q -dimensional vectors of the Euclidean soace&& a constant 
suuare matrix with only pure imaginary eigenvalues _t A, (Asa < 0 (S = 1, 2, . , ,, 
4)~ among which there are no multiples and X, (3,) are holomorphic functions whose 

expansions in powers ofx*begin with mth order forms. 

Let system (0.1) have an intrinsic resonance of order k- i. e. the relationship of the 
form (A, P) = 0, P = (PI, . . *, pJ, P,ZO 

A = (A,, . . l , A,), IPl=p,+...+pq==k, X-=m+l 

where V is the vector of eigenvalues of matrix A and P, are mutually disjoint integers, 
are satisfied. 

Systems with only one resonance relationship of the indicated form were investigated 
in C3-51. Let us consider more complex systems in which several resonance relatio~hips 
can exist simultane~sly, Certain particular cases of that problem were analyzed in 

El, 2x 
The object of the present work is the extension of the results obtained in [l, 2~ to any 
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kind and number of resonances for odd k. 
Let us consider the following form of the input system (0.1): 

X’= hx + 5 X(‘)(X, y) 
Z=?TS>,z 

(0.2) 

y-= - AY + j_ y(z)(G Y) 
, 

2=(,z1, . . . ,q Y = (Yl, . . f , Yq) h = {h, * ‘. v hq) 

which is obtained by the complex linear transformation described in [6], and in 
which xand y are complex conjugate vectors, 3r is a diagonal matrix, and X(l) 
andyWare complex conjugate vector functions whose components Xs(O, yScr) (a = 

1. 2, . . .* Q) are l-th order forms of 2 and y 
l. The case of independent resonances. Let system(0.2.) have ,U 

resonance relationships of the form 

(A”, py> = 0, v=t,2, ... 7P 

A, = @“I, hvz, . . ., h”,,), 1 p, 1 = . * * = I PP I = k 

n1 + n2 + . . . + np = n < q 

(1.1) 

where 11, is the v -th vector component of vector A = (A,, . . ., hp), and 

P” is an integral vector with positive components ~“1, . . . . . ., pqn,. 
By applying to system (0.2) the nonlinear normalizing transformation described 

in [3] we obtain 

rvs ’ = 2Q”s (0”) R” + . . . (1.2) 

0”’ = R”& Q:&) + . . . 
j=l “s 

s = 1, 2, . . . ( IL”; v=1,2 ,... ,p 

r . - 0 (r’/z (k+l)), a- 0,’ = 0 (r”, @+I)), CJ = n + I, . . . 4 

f 

nv 

0” = p”10”1+ . . . + p”n”0”n”, R” = n fj”j 
j_;1 

QYs = avs cos 0” + b”, sin 0”, 
dQ”, 

Q:, (0”) = r 
Y 

P 
r= FI(~“~+... +r”n”)-t-rn+l+...+rp 

V==l 

where r,,, 0”, rE, 8, are polar coordinates and the implicit terms are of order 

not lesser than the k + I-st with respect to ra. 
Thus the model @em (derived from (1.2) by the rejection Of implicit terms) de- 

compose into a nonresonance system (in variables pa and 0, ) and P independent 
resonant subystems (in variables rvs and 0, ), which were the subject of detailed 
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analysis in [3f. 
The ore m 1. If the trivial solution o f the model system (1.2) is to be stable 

it is necessary and sufficient that the trivial solutions of each resonance subsystem 

are stable. 
The necessary and sufficient conditions for the stability of resorrance subsystems 

are given in [3] in the form of inequalities that are to be satisfied by the normal 

form of coefffcients Gs and b,,. 

7, The case of resonance interaction. Let us consider the case in 
which resonance relationships (1.1) have common frequencies. We begin with the 
simplest case in which each resonance relationship has only one common frequency 

:&, and, consequently, the condition of intrinsic resonance can be written as 

Uo + CA”, P”) = 0, v=i,2 f... * ,p @*a 

Pve+jP,/=k, k=m+f 

where A, and P, retain their original meaning. As previously, we assume that 
from the overall number Q of frequencies only n = 1 + n, + n, + , . . 

- . . -!- np < 4 frequencies participate in the resonance. 

Applying successively to the system the set of tra~formatio~ shown in 133 and 

taking into account (2. l), we can obtain for system (0.2) in polar coordinates 
ro, 8,; h, evs to within the first nonlinear terms the following normal form: 

I”0* = 2 4 fivQvO (e,) + . . . , 

(2.2) 

f, = 2wVS w + . . - 

nv 
e; = R, ZJ 

s=1 

$f- ais 63,) + fi ‘;; - who v-b) + * - - 
P=l 

ra l = 0 (r% (k+U), raea’ = 0 (r% (k+l)) 

s=1,2, .*. ,ny, V=i,2 , a.. ,I& a=nfl, .,. ) r, 

five= rz@ 6 r%, 
j=l " 

Qvs (0,) =: avs cos 8, + b,, sin 8, 

8, == 2heo + ~~~~~~ + . . . + pvny b, 

r = r0 -t _.i (51 + . . . + r,,J + rail f . I . A-- rq 

Equations (2.2) show that the problems of stability of the model system trivial solu- 
tion is again reduced to that of stability of the first n + lequations which constitute 

the resonance subsystem, However, unlike independent resonances, this subsystem 
does not decompose into P independent subsystems. It is nevertheless possible to 
obtain the necessary and sufficient conditions for the stability of the model system, 
We shall show that such conditions require the existence of the constant-sign integral 

F 
0 = W-0 + B (cvrv~ + . . . + cvnvrvn,) + 

9 
ra = const 

(2.3) 
v=1 

2 
a=.n+l 
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Equating to zero the derivative of (2,3), by virtue of the model system (2.2) we obtain 
equations 

Co&o $- cv,a,, “+ . * - + CYn,a”fl Y = 0 

Cob”0 -I- cv1&1 -I- . . . $- cvn,byny = 0, 
f% 41 

Y = 1, 2, . . . p 
which must be satisfied by the constants co, cvl, 4 ’ ‘> cw&,> Thus the existence of 
a positive solution of system (2.4. ) is a sufficient condition of existence of the integral 

(2.3). 
First, let us consider the nondeeenerate case in which each of matrices 

&=b b 

ii 

GO a,, . . . 

\10 Vl *** 

the rank of A, = 2 H % > 2. 
Composing all possible matrices 

v--1,2, .*. ,fl 

I ’ a,fJ,y=O,i,2 ,..., 16 
” 

it is possible to show that the necessary and sufficient conditi~ of existence of the in- 
dicated above solution is of the same form as in the case of a single resonance [3,5], 

namely 

(2.5) 

The fulfilment of the above condition for any single value of y means that the 

model system would be stable, if only one resonance relation is satisfied for the in- 
dicated value of Y. Such resonance (which preserves the indifferent stability of 

the model system) will be called weak resonance. If, however, such resonance (in the 

absence of any other) results in the instability of the models system it will be called 

strong resonance. If the rank of A, = 1 conditions (2.5) lose their meaning. But, 

then as implied by (2.4), the necessary and sufficient condition of existence of a pos- 

itive solution is that matrix A, contains a pair of elements ava, oUp(or3ya, b+); a, 
andp = (),{,a, . - ., Goof opposite signs, This, in particular, occurs with Hamiltonian 

systems, as well as in the case of other systems that contain two-frequency resonances, 

to which in system (2.4) correspond pairs of equations each containing two unknown 

Co and cvl. 
Let us show that when system (2.4) has no positive solution even for only one value 

v = x the trivial equation of the model systeto:(Z. 2) is unstable. 
We exclude from the analysis the case of particular interaction when among resonan- 

ces (2.1) there is a weak one for which condition 

72, = 1 P, 1 = 1 
(2.6) 

is satisfied (in the absence of multiple roots + of the input system only one such re- 

sonance is, evidently, possible). This case requires special investigation. 

Setting in (2,2) rvs 5 0; s = 1, 2, . . ., h; v = 1, 2, . . . , x - 1, x + 
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I t * l ** P for the resonance subsystem we obtain 

423 

The Ailure to satisfy conditions (2.5) for V = x implies the instability of the 
trivial solution of system (2,7) [3, 53. This c&n be shown with the use of Chetaev’s 
function or by the direct ~~~~~~~~0~ of the unstable part&.&r soWion. The same 
can be done if the rank of d y = 1 and among the elements of matrix 4, there is 
not a single pair 6~ @XP (or bra% && a and fi = 0, 1, 2, . . .f n, of 
opposite signs, 

on the b&s of the above we can formulate the following theorem. 
Theorem 2. For the stability of the trivial so&.&on of the model system (0.2) 

with resonance (2.1) it is necessary and sufficient that each of the resonances is weak, 
I,& us now consider the most general case, when each of the resonance relations 

contain two or more cornman frequencies, i. e. we assume that the first B (fi % S) 
eigenvalues satisfy resonance relations of the form 

where A, is the vector component of eigenvalues that is common for all resonance 
relations, 11 is the vector component of eigenvalnes appearing only in the 
resonant relation, and C& and PC are vectors of dimensions pLg 

V -th 
and ?% 

respectively, with positive integral components. 
Using the transformations described in [3J for odd k we obtain in polar coordinates 

the following normal form of system (0.2): 

~~*=2~~R~~~~~~~~==*, 
(2.91 

s=l*Z* *** *?sg 
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QVo (0,) = au5 cos 0, $ b,, siri 8,, v = 1, 2, . . . , p 
that is accurate t o within the first nonlinear terms (only the resonance subsystem is 
written out). 
The assumption that one of the resonances (2.8) is strong when Y==X i. e. 
that it results in the instability of the model system in the absence of other resonances, 

means that the system of equations 

has a particular unstable solution of the kind of increasing ray [3]. But then the model 
system (2.9) has a similar solution, since (2.10) is derived from it by setting rva = 

0 for all 11 # K. 
This proves the following theorem. 

The ore m 3. Weakness of each of the P resonances (2.8) is the necessary 
condition of stability of the trivial solution of the model system (2.9). 

N o t e. The correspondence of the unstable solution of the input model system to 
the indicated unstable particular solution of system (2.9) requires the exclusion from 
the analysis, as in the case of (2.6), the case 1 P, 1 < 1, v + 1c, since it requires 

other methods of analysis(O) 

The stated necessary condition of stability of the model system in the case of reson- 
ance interaction of the kind (2.8) is, generally speaking, insufficient. It is possible 
to show that the interaction of several weak resonances linked by more than one com- 

mon frequency can result in instability, An example of this is given in [2]. 

3. @ample. As an example of the complex system in which can appear some of 
the investigated types of resonance interaction, we consider the ~~sla~onal-rota- 

tional motion of a geostationary satellite vehicle which can hover over some point 
of the Earth surface for a fairly extended time. For this it is sufficient to impart to it 

a constant in modulo reaction acceleration at a constant angle $ to the axis of 

rotation of the Earth [?I. It was shown in [8] that on specific gumption the equa- 
tions of the translational-rotational motion of such satellites have a three-parameter 
set of solutions that correspond to the relative equilibrium of the vehicle in an orbi- 
tal system of coordinates and to a uniform motion of its center of mass on a circular 

orbit. 
The analysis of the stability of indicated particular solutions yields a system of 12- 

th order equations of perturbed motion, whose coefficients depend on parameters of 
the orbit and the geometry of the vehicle masses in a complex manner. Owing to 
this a complete analysis of stabil$ can only be made on a computer. The variation- 

al equations are 
II 

Xc = 2 a,iXi 9 s=1,2, . . . ,12 
i=l 

9 The authors thank the reviewer for drawing their attention to this point. 
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where %f *-.) ZO are per- 
turbations of radius P 

I* 3 

Fig. 1 

(for a stationary equatorial sat- 
ellite p = 1 ), latitude g, 

and longitude of the vessel cen- 

ter of mass; ~7~ % and se 

are perturbations of projections 

of the vehicle absolute angular 
velocity on the principal axis of 

inertia, and X101 511 , and 

z12 are perturbations of direct- 
ional cosines of angles between 
the attached and an orbital sys- 

tem of coordinates, The non- 

zero elements of matrix II asi 11 
b 2 are of the form 

ai4 = $* = 1, QQP = -2, us5 = 2tg v, Us* = -sin tp, 

a S,rO = (1 - p ~0~2 cp) / (2p cos rp), abl = 2ip + cos2 'p, aa3 = -_-sin 2v, 

a45 = 2 cos2 cp, a4,11 = sin 2q / (2 cos a), ael = -sin 2v I 2, 

a** = - cos 2q, a** = -sin 2q, abrll = (p cos2 cp - 1) I (2p oos a), 

asl=9(e-Qsin2a/(2p), a*,=(&-e)sin(a+(P), a~=@-se)~ 
.cos (a -I- rp), a6,ll = 3 (8 - 6) cos 2a I (p cos a), aT6 = fe - 1) sin (a + cpfld, 

a7,l0 = 3 (i - e) cos a / (p6), Use = (1 - 6) cos (a + rp) I 8, a~,~0 = 
3 (1 - 6) sin a / (Ep), a** = -cos (p, a** = -sin gp, a*7 = -sin a, a** = 
co9 a, a*,rl = cos cp / cos a, alo,* = -sin (p, a1o,3 = c0s cp, alo, = 
-CoS a, alO,R = -sin a, alOtll = sin ‘p f cos a, all,& = cos a, all,6 = 

cos a, all,e = -cOsrp~cos a, al,,lo = -sin cp.CoS a 

E==C/A,~=B/A 

where a is the angle of turn of the meridian plane containing the principal ax- 

es of inertia relative to the orbital system, and 4, B and C are the squared radii of in- 
ertia of the vehicle relative to the principal axes which are considered to be constant. 

The structure of matrix # @si /I is such that the equationA $1 S 11 aSi - ha,i J[ = 0 

has a pair of zero roots after the removal of which the characteristic polynomial 

A (A) contains A only of even powers and, consequently, stability is onlypes- 
sible in the critical case, (It can be shown (*) that by approximating the Earth po- 

tential by that of a triaxial ellipsoid the above pair of zero roots is converted to a 
pair of purely imaginary roots of small modulus. ) 

The results of calculations carried out on type M-220 computer for the determination 
the necessary conditions of stability in the plane of parameters 8, 6 forP=l. 
and q = 2” (angle II was selected to satisfy the condition of minimum of re- 

9 Myrzabekov, T., Stability of a stationary orbiting vehicle, Candidate’s dissertation, 
Chimkent, 1975. 
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actiqe acceleration) are shown in Fig. 1. In the unshaded region the characteristic 
equation has a pair of zero roots and five pairs of purely imaginary roots _tiw, (w, > 
0, s = i,2, . . ., 5). In the shaded region there are roots with positive real parts, hence 
the motion is strictly Liapunov unstable. 

When 4, = 0 the frequencies %, o2 and 0s determine only the rotational motion, 
while 04 and or, define only the translational motion. These results have also 
shown that in the indicated stability region of linearized equations the following 

twelve third order resonance relationships (when cp = 2” o4 = 0s with a con- 
siderable degree of accuracy): 

1) 0s - 20, = 0, 2) - 2wz = 0, 3) 01 - 02 - 04,s op = 0,4) 0 3 - 03 - = w4,5 

0, 5) - 03 - 04,5 03 = 0, 6) o1 - w2 - = 0, o~,~ 7) oi - 203 = 6, 8) - 04,5 

20, = 0, 9) 03 - 20, = 0, 10) 02 - 20, = 0, 11) 01 - 03 - 05 = 0, 12) WI- 
os- 0, = 0. 

Resonance curves corresponding to these relationships along which instability of 
the system is possible are plotted in Fig. 1 (numbered in the same order). At inter- 
section points (point A) of these curves the interaction of two or more resonances 
takes place. The problem of stability at these points is determined by the theorems 

proved above. 
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